

UniversitätsKlinikum Heidelberg

International Pediatric Transplant Association

Viral Infections after Transplantation

Burkhard Tönshoff, MD, PhD University Children's Hospital Heidelberg

Pediatric Transplantation Teaching Course, Moscow 2016

OVERVIEW

- Timeline of post-transplant infections
- Selected infectious agents:
 - Cytomegalovirus (CMV)
 - Epstein-Barr virus (EBV)
 - Polyomavirus (BKV, JCV)

Timeline of Post-Transplant Infections

Donor- derived Nosocomial Technical Donor/Recipient	Activation of Latent Infections Relapsed, Residual, Opportunistic Infections	S, Community-Acquired
Transplantation Transplantation Derived C 4 Weeks	ynamic Assessment of Infection Months 1 - 6	n Risk > 6 Months
 Resistant Species: MRSA, VRE, Candida Aspiration, Line/Wound Infection, Anastomotic Leaks/Ischemia Clostridium diff. Colitis 	 With Prophylaxis: Polyomavirus (BKV) Clostridium diff. Colitis Adenovirus, Influenza, HCV Cryptococcus neoform. M. tuberculosis 	Community-Acq. Pneumonia Urinary Tract Infection • Aspergillus, Atypical Moulds • Nocardia, Rhodococcus Late Viral Infections: • CMV (Colitis, Retinitis)
Donor-Derived (uncommon): • HSV, LCMV, Rabies, West Nile Virus Recipient: • Aspergillus,	Anastomotic Compl. Without Prophylaxis (add.): • Pneumocystis (PcP) • HSV, VZV, CMV, EBV, HHV-6, HHV-8, HBV • Listeria, Nocardia,	 Hepatitis (HBV, HCV) HSV Encentralitis

Cytomegalovirus (CMV)

Frequency of CMV Risk Constellation in Pediatric Renal Transplant Patients

CMV-Serostatus	Pediatric Patients	Adult Patients ²
D+/R-	29.2%	18.2%
D+/R+	25.9%	39.8%
D-/R+	9.3%	23.2%
D-/R-	35.6%	18.8%

Pediatric patients bear a higher risk of primary CMV infection than adults.

¹Höcker et al., Transplantation 2015 ²Am J Transplant 2014; 14 Suppl 1: 11

Definition of CMV Infection

Infection

Presence of CMV replication regardless of symptoms (viremia (defined as pos. NAT and/or pos. pp65Ag), pos. culture and/or histopathological evidence)

Disease

Presence of CMV infection accompanied by clinical symptoms

Syndrome

CMV replication plus one or more of the following criteria:

- Fever
- Malaise
- Leukopenia
- Thrombocytopenia

Tissue-Invasive Disease

CMV replication plus one or more of the following criteria:

- Gastrointestinal disease
- Pneumonitis
- Hepatitis
- CNS disease
- Retinitis
- Other (nephritis, cystitis, myocarditis, pancreatitis, etc.)

Invasive CMV Disease Clinical Manifestation of CMV Pneumonitis

Bilateral Interstitial Infiltrates

Ground-Glass Opacity

Am J Radiol 2009; 192: 1

Invasive CMV Disease Clinical Manifestation of CMV Colitis

"Burning flame"

Invasive CMV Disease Histopathology

CMV Hepatitis

CMV Nephritis

Diagnostics

Prior Kidney Transplantation

- CMV serology (IgG) in donor and recipient
 - Donor <12 months and CMV IgG pos. \rightarrow "CMV pos."
 - Recipient < 12 months and CMV IgG pos. \rightarrow "CMV neg." (maternal antibodies)

Post-Transplant

CMV quantitative NAT (QNAT) in plasma or whole-blood

(preferred method of diagnosis and monitoring response to therapy; calibration of assay according to WHO standard; no change of specimen type)

CMV pp65Ag is an acceptable alternative.

(cave: sample processing within 6 - 8 hrs; diagnostically less conclusive in case of leukocytopenia)

- Histology/immunohistochemistry for diagnosis of tissue-invasive disease
- CMV culture and QNAT of tissue specimens only in case of gastrointestinal disease and pneumonitis (BAL)

An ounce of prevention is worth a pound of cure.

B. Franklin

Special Article

doi: 10.1111/ajt.12103

Cytomegalovirus in Solid Organ Transplantation

R. R. Razonable^{a,*}, A. Humar^b and the AST Infectious Diseases Community of Practice

Updated International Consensus Guidelines on the Management of Cytomegalovirus in Solid-Organ Transplantation

Camille N. Kotton,^{1,8} Deepali Kumar,² Angela M. Caliendo,³ Anders Åsberg,⁴ Sunwen Chou,⁵ Lara Danziger-Isakov,⁶ and Atul Humar,⁷ on behalf of The Transplantation Society International CMV Consensus Group

Transplantation • Volume 96, Number 4, August 27, 2013

Chemoprophylaxis

Serostatus	Risk Level	Recommended Alternate	
D+/R-	Intermediate to high	 3 - 6 mths of valganciclovir (or ganciclovir i.v.) as recommended in adults^A OR 2 - 4 wks of valganciclovir (or ganciclovir i.v.) with sequential monitoring 	
R+	Low	2 - 4 wks of valganciclovir (or ganciclovir i.v.) with sequential monitoring	3 - 6 mths of valganciclovir (or ganciclovir i.v.) as recom- mended in adults ^A
D-/R-	Lowest	Monitoring for clinical symp- toms	Preemptive monitoring

^AT cell-depleting induction is associated with increased risk of CMV replication and disease; consider prolonged prophylaxis or more intensive monitoring.

Valganciclovir Dosage for CMV Prophylaxis

FDA Issues New Dosing Recommendations For Valganciclovir:

... children with low body weight, low body surface area, and very low serum creatinine could have a high calculated creatinine clearance requiring a dose of the antiviral approaching the maximum 900-mg dose used in adults...

...To minimize the potential for overdose, the FDA has set a maximum value for the calculated creatinine clearance of 150 ml/min·1.73 m²...

... formula yields a dose higher than 900 mg, the 900-mg dose should be used...

MedPage Today, September 15, 2010

Dose (mg/d) = 7 x BSA (m^2) x eGFR * (ml/min-1.73 m^2)

- *Schwartz formula: eGFR = height (cm)/serum creatinine (mg/dl) x 0.413
- Max. eGFR = 150 ml/min-1.73 m²
- Max. daily dose 900 mg

Association between VGCV Prophylaxis and CMV Replication in CMV High-risk (D+/R-) Patients

— Control group

Cooperative EuropeanPaediatric Renal Transpl-Ant INitiative

Höcker B et al., Transplantation 2015

Direct and Indirect Effects of CMV

Clin Transplant 2007; 21: 149

CMV-Associated Pathology of Kidney Allograft

- Intragraft CMV protein expression is associated with reduced renal allograft survival.
 Clin Infect Dis 2011
- CMV increases tubular apoptosis through the TNF-α–TNF-R1 pathway in a rat model of chronic renal allograft rejection. Transpl Immunol 2008
- Persistent CMV infection is associated with increased expression of TGF-β₁, PDGF-AA and ICAM-1 and arterial intimal thickening in kidney allografts.
 NDT 2005; Transpl Immunol 2006
- CMV induces TGF- β_1 activation in renal tubular epithelial cells after epithelial-to-mesenchymal transition.

Reduced Graft Function in Pediatric RTx Patients with CMV Replication

Independent risk factors for eGFR loss (multivariate analysis):

- CMV replication (P < 0.05)
- Acute rejection (*P* < 0.05)
- Recipient's age (*P* < 0.001)

Hematological Data

Hematological data	Prophylaxis group (n = 99)	Control group (n = 143)	<i>P</i> value
Anemia [Hb < 8 g/dl], n (%)			
Up to 100 days post-transplant	18/99 (18%)	12/143 (9%)	0.023
During 1 st year post-transplant	24/99 (24%)	26/143 (18%)	0.252
Leukopenia [leukocytes < 3500/µl], n (%)			
Up to 100 days post-transplant	22/99 (22%)	12/143 (9%)	0.002
During 1 st year post-transplant	34/99 (34%)	27/143 (19%)	0.006
Neutropenia [neutrophils < 1300/µl], n (%)			
Up to 100 days post-transplant	15/64 (23%)	10/103 (10%)	0.016
During 1 st year post-transplant	19/58 (33%)	17/84 (20%)	0.092
Agranulocytosis [granulocytes < 500/µl], n (%)			
Up to 100 days post-transplant	8/64 (13%)*	1/103 (1%)	0.001
During 1 st year post-transplant	11/58 (19%)	2/84 (2%)	0.001
Thrombocytopenia [thrombocytes < 100/µl], n (%)			
Up to 100 days post-transplant	4/99 (4%)	8/143 (6%)	0.584
During 1 st year post-transplant *3 of 8 (38%) patients received over	6/99 (6%) erdosing of VGCV by 46	8/143 (6%) 5-64% prior to agra	0.879 nulocytosis.

Therapy

Asymptomatic CMV Infection

- Ganciclovir i.v. (5 mg/kg b.i.d.) in children aged < 5 years
- Valganciclovir p.o. (2-fold prophylactic dosage) in older patients
- Reduction of immunosuppression where indicated

CMV Disease

- Ganciclovir i.v. (5 mg/kg b.i.d.) in children aged < 12 years</p>
- Valganciclovir p.o. (2-fold prophylactic dosage) in older patients
- CMV Ig i.v. (in addition to above-mentioned antiviral agents) in patients with severe CMV disease (i.e., pneumonitis, enteritis) and in those with hypogammaglobulinemia during CMV infection or disease

Epstein-Barr-Virus (EBV)

Epstein-Barr Virus (EBV) Infection and Post-Transplant Lymphoproliferative Disease (PTLD)

- Mostly mild cytopathic properties
- But ability to immortalize
 B cells
- Under immunosuppression risk of malignant B cell transformation
- 90% of PTLDs in pediatric patients induced by EBV

Risk Factors For PTLD

Early PTLD (≤12 months post-transplant)

- Primary EBV infection
- OKT3 and polyclonal antilymphocyte antibodies
- Young recipient age (i.e., infants and young children)
- CMV mismatch or CMV disease

Late PTLD (>12 months post-transplant)

- Duration of immunosuppression
- Older recipient age (i.e., adults)

EBV-Seronegativity at RTx as Risk Factor for the Development of Non-Hodgkin Lymphoma (NHL)

Spectrum of EBV Infection and Disease

- Asymptomatic EBV infection
- Unspecific flu-like symptoms
- Infectious mononucleosis

PTLD Categories (WHO Classification)

- I. Early lesions
 - Plasmacytic hyperplasia
 - Infectious mononucleosis-like lesion
- II. Polymorphic PTLD
- III. Monomorphic PTLD (B-, T- or NK-cell type)

IV. Classical Hodgkin lymphoma-type PTLD

Diagnostics

Prior Kidney Transplantation

EBV serology (IgG) in donor and recipient for risk assessment

Post-Transplant

- EBV viral load
 - Lack of standardization in terms of specimen (whole-blood, lymphocyte, plasma), cut-off value (WHO international standard has yet to be validated.)
 - Monitoring schedule?
 - Poor positive predictive value for PTLD (28 65%)
- EBV-specific T cell response
 - Assays are complex, costly and difficult to implement in routine diagnostic laboratory.

EBV load screening and monitoring

Antiviral Prophylaxis

- EBV-naïve (R-) recipients of EBV-positive kidney allograft (D+) carry a high risk of primary EBV infection.
 Am J Hematol 2011; 86: 206
- Subclinical EBV infection is accompanied by chronic allograft dysfunction. J Am Soc Nephrol 2010; 21: 1579
- Cumulative incidence of NHL is significantly increased (p<0.001) in EBV-negative kidney allograft recipients.
 Transplantation 2009; 88: 962
- CMV Ig is associated with significantly lower (p<0.02) NHL risk.

Lancet Oncol 2007; 8: 212

Antiviral chemoprophylaxis (ganciclovir/aciclovir) is accompanied by an up to 83% reduction of the PTLD risk.
Am J Transplant 2005; 5: 2894

Effect of antiviral prophylaxis with (val-)ganciclovir on the incidence and morbidity of primary EBV infection in high-risk (D+/R-) patients?

Transplant International ISSN 0934-0874

ORIGINAL ARTICLE

(Val-)Ganciclovir prophylaxis reduces Epstein-Barr virus primary infection in pediatric renal transplantation

Britta Höcker,¹ Stephan Böhm,^{2,3} Helmut Fickenscher,^{2,4} Uta Küsters,² Paul Schnitzler,² Martin Pohl,⁵ Ulrike John,⁶ Markus J. Kemper,⁷ Henry Fehrenbach,⁸ Marianne Wigger,⁹ Martin Holder,¹⁰ Monika Schröder,¹¹ Reinhard Feneberg,¹ Sabine Köpf-Shakib¹ and Burkhard Tönshoff¹

- 1 University Children's Hospital, Heidelberg, Germany
- 2 Department of Infectious Diseases, Virology, University of Heidelberg, Heidelberg, Germany
- 3 Department of Gastroenterology, University Hospital Leipzig, Leipzig, Germany
- 4 Institute for Infection Medicine, University of Kiel, Kiel, Germany
- 5 University Children's Hospital, Freiburg, Germany
- 6 University Children's Hospital, Jena, Germany
- 7 University Children's Hospital, Hamburg, Germany
- 8 Children's Hospital, Memmingen, Germany
- 9 University Children's Hospital, Rostock, Germany
- 10 Olga Children's Hospital, Stuttgart, Germany
- 11 Clementine Children's Hospital, Frankfurt, Germany

Effect of Antiviral Chemoprophylaxis with (Val-)Ganciclovir on the Incidence of Primary EBV Infection in High-Risk (D+/R-) Patients

Transpl Int 2012; 25: 723

Polyomavirus (BKV)

Primary Infection

Occurs during first decade (seropositivity ~90%).

- Unspecific flu-like symptoms
- Transmission via respiratory tract

Persistent / Latent Infection

Kidney, urothelial cellsCNS? Leukocytes? Gastrointestinal tract?

Reactivation

Immunological Competence

Reactivation ~ 10% \rightarrow viruria <10⁵ cp/ml

Immunosuppression

- RTx: reactivation of BKV in donor urothelial cells
- Shedding of "decoy cells"
- High-level viruria in 30 50% of patients after $RTx \rightarrow viruria > 10^7 \text{ cp/ml}$
- 30% of patients with high-level viruria develop BKV viremia
- Premature graft failure in 1 15% due to BKV

J Infect Dis 1973; 128(6):784-787

Diagnostics

Urine

Cytology ("decoy cells", not pathognomonic: CMV, adenovirus)

■ **Viral Load** (BKV DNA load >10⁷ cp/ml; BKV VP1 mRNA load >10^{6.5}/ng RNA)

Advantages: high negative predictive value for polyomavirus-associated nephropathy (PyVAN), window period of 6 – 12 wks before viremia and nephropathy

Disadvantage: low positive predictive value for PyVAN

PyV Aggregates ("Haufen")

Advantage: high (>90%) positive and negative predictive value for PyVAN Disadvantage: expertise in EM of PyV aggregates required

"Decoy Cells"

PyV "Haufen"

J Am Soc Nephrol 1999; 10: 1080; Lancet Infect Dis 2003; 3: 611; J Am Soc Nephrol 2009; 20: 416; Am J Transplant 2013; 13: 179

Diagnostics

Blood

■ Viral Load (BKV DNA load >10⁴ cp/ml)

Positive predictive value (PPV) for PyVAN 30 – 50%, window period of 2 – 6 wks before PyVAN, BKV DNA load >10⁴ cp/ml \rightarrow "presumed" PyVAN, BKV DNA load >10⁶ cp/ml \rightarrow "proven" PyVAN (PPV 90%)

Graft Biopsy

Immunohistochemistry (T-Ag SV40, VP1)

■ ≥2 cylinders, also medullary tissue (sampling error in 10 - 30%)

J Am Soc Nephrol 1999; 10: 1080; Lancet Infect Dis 2003; 3: 611; J Am Soc Nephrol 2009; 20: 416; Am J Transplant 2013; 13: 179

Histology	Description	Extent of Bx Core	Risk of Graft Loss
 PyVAN A Viral cytopathic changes Interstitial inflammation Tubular atrophy Interstitial fibrosis 	Mild Minimal Minimal Minimal	≤25% ≤10% ≤10% ≤10%	<10%
 PyVAN B Viral cytopathic changes Interstitial inflammation Tubular atrophy Interstitial fibrosis PyVAN B1 	Variable Significant Moderate Moderate Moderate	11 - >50% 11 - >50% <50% <50%	50%
 Interstitial inflammation PyVAN B2 Interstitial 	Significant Extensive	11 - 25% 26 – 50%	25% 50%
inflammation • PyVAN B3 - Interstitial inflammation	Extensive	>50%	75%
PyVAN CViral cytopathic changes	Variable Variable	Variable	Am J Transplant 2013; 13: 179

Therapy of PyVAN: Reduction of Immunosuppression

Strategy 1

- 1. CNI (TAC, CSA) dose reduction by 25 50%
- 2. Reduction of antimetabolite (MMF, AZA) dosage by 50% or discontinuation

Strategy 2

- 1. Reduction of antimetabolite (MMF, AZA) dosage by 50%
- 2. CNI (TAC, CSA) dose reduction by 25 50%
- 3. Discontinuation of antimetabolite

Immunsuppressant	Pre-Dose Level / Dosage
TAC	<6 ng/ml (target 3 ng/ml)
CSA	<150 ng/ml (target 100 ng/ml)
SRL	<6 ng/ml
MMF	<1000 mg/d (corresp. <600 mg/m²·d)
Prednisone	<10 mg/d (corresp. <5.8 mg/m²·d)

Conversion of immunosuppressive regimen

Adjunctive Therapy of PyVAN

Cidofovir (Vistide®)

0.25 - 1 mg/kg i.v. at 1- to 3-week intervals

Cave: nephrotoxicity, anterior uveitis (12 - 35%)

Leflunomide (Arava®)

Substitute for MMF

Loading dose 100 mg/d for 5 days, maintenance dose 40 mg/d

Cave: hepatitis, hemolysis, thrombotic microangiopathy, bone marrow suppression, fungal pneumonia

IVIG

■ 0.2 – 2 g/kg i.v. in conjunction with reduced immunosuppression

Fluoroquinolones?

Screening

- Every 3 mths during first 2 yrs post-transplant or
- If allograft dysfunction

